lunes, 17 de agosto de 2015

RESPIRACIÓN CELULAR

RESPIRACIÓN CELULAR

La respiración celular o respiración interna es el conjunto de reacciones bioquímicas por las cuales determinados compuestos orgánicos son degradados completamente, por oxidación, hasta convertirse en sustancias inorgánicas, proceso que proporciona energía aprovechable por la célula (principalmente en forma de ATP). Se trata de la respiración aerobica.
Este proceso celular es realizado por el orgánulo mitondrial (mitocondrias). Su ecuación general es la siguiente (respiración aeróbica): 



Características
Se produce en la mitocondria. La respiración celular, como componente del metabolismo, es un proceso catabólico, en el cual la energía contenida en los substratos usados como combustible es liberada de manera controlada. Durante la misma, buena parte de la energía libre desprendida en estas reacciones exotérmicas es incorporada a la molécula de ATP, que puede ser a continuación utilizada en los procesos endotérmicos, como son los de mantenimiento y desarrollo celular (anabolismo).

ETAPAS DE LA RESPIRACION CELULAR:
  1. CLUCOLISIS
  2. FORMACION DEL ACETIL CoA
  3. CICLO DE KREBS








GLUCÓLISIS
La glucólisis o glicólisis (del griego glycos, azúcar y lysis, ruptura), es la vía metabólica encargada de oxidar la glucosa con la finalidad de obtener energía para la célula. Consiste en 10 reacciones enzimáticas consecutivas que convierten a la glucosa en dos moléculas de piruvato, el cual es capaz de seguir otras vías metabólicas y así continuar entregando energía al organismo. 


CICLO DE KREBS
El ciclo de Krebs (ciclo del ácido cítrico o ciclo de los ácidos tricarboxílicos)
Es una ruta metabólica, es decir, una sucesión de reacciones químicas, que forma parte de la respiración celular en todas las células aeróbicas. En células eucariotas se realiza en la matriz mitocondrial. En las procariotas, el ciclo de Krebs se realiza en el citoplasma
En organismos aeróbicos, el ciclo de Krebs es parte de la vía catabólica que realiza la oxidación de glúcidos, ácidos grasos y aminoácidos hasta producir CO2, liberando energía en forma utilizable (poder reductor y GTP).
El metabolismo oxidativo de glúcidos, grasas y proteínas frecuentemente se divide en tres etapas, de las cuales el ciclo de Krebs supone la segunda. En la primera etapa, los carbonos de estas macromoléculas dan lugar a moléculas de acetil-CoA de dos carbonos, e incluye las vías catabólicas de aminoácidos, la beta oxidación de ácidos grasos y la glucólisis. La tercera etapa es la fosforilación oxidativa, en la cual el poder reductor (NADH y FADH2) generado se emplea para la síntesis de ATP según la teoría del acomplamiento quimiosmótico.
El Ciclo de Krebs fue descubierto por el alemán Hans Adolf Krebs, quien obtuvo el Premio Nobel de Fisiología o Medicinaen 1953, junto con Fritz Lipmann.


Reacciones del ciclo de Krebs
El ciclo de Krebs tiene lugar en la matriz mitocondrial en la célula eucariota
El acetil-CoA (Acetil Coenzima A) es el principal precursor del ciclo. El ácido cítrico (6 carbonos) o citrato se obtiene en cada ciclo por condensación de un acetil - CoA (2 carbonos) con una molécula de oxaloacetato (4 carbonos). El citrato produce en cada ciclo una molécula de oxaloacetato y dos CO2, por lo que el balance neto del ciclo es:
Acetil-CoA + 3 NAD+ + FAD + GDP + Pi + 2 H2O → CoA-SH + 3 (NADH + H+) + FADH2 + GTP + 2 CO2
Los dos carbonos del Acetil-CoA son oxidados a CO2, y la energía que estaba acumulada es liberada en forma de energía química: GTP y poder reductor (electrones de alto potencial): NADH y FADH2. NADH y FADH2 son coenzimas (moléculas que se unen a enzimas) capaces de acumular la energía en forma de poder reductor para su conversión en energía química en la fosforilación oxidativa.
El FADH2 de la succinato deshidrogenasa, al no poder desprenderse de la enzima, debe oxidarse nuevamente in situ. El FADH2 cede sus dos hidrógenos a la ubiquinona (coenzima Q), que se reduce a ubiquinol (QH2) y abandona la enzima.

No hay comentarios:

Publicar un comentario